

Materials Testing, Characterization, and NDE

Michael McMurtrey, INL

AMMT Industry Workshop May 23rd, 2023

Multi-lab team

- Teams from Argonne, Idaho, Oakridge, and Pacific Northwest National Laboratories collaborating in this area.
- Acknowledge input from Yiren Chen (ANL), Xuan Zhang (ANL), Bill Chuirazzi (INL), Amir Ziabari (ORNL), Matthew Olszta (PNNL), Robert Montgomery (PNNL) and other teams supporting this work at each laboratory

Validated Informatics for multi-scale characterization

Complex thermal signatures cause variations in properties

Defect size, density & distribution vary for uniform process conditions

Decrease time requirements for qualification

- Accelerated testing
- Process monitoring/control as part of the qualification
- Accelerated characterization
 - Part of the qualification process
 - Provide data for modeling/simulation

Capabilities at National Laboratories

Microscopy

- Transmission Electron Microscopy
- Scanning Electron Microscopy
- Atom Probe
- Focused ion beam
- Optical/Laser

NDE

- X-ray/neutron Computed Tomography
- X-ray/Neutron diffraction
- Resonant ultrasound spectroscopy

Testing

Mechanical testing

- Electrical/hydraulic test frames
 - Tensile
 - Cyclic
 - Crack growth rate
- Creep
 - Stress relaxation
 - Rupture
- Charpy impact
- Hardness

Materials	Environments	Mechanical load			in-situ irradiation	
		no load	static load	dynamic load	ions	gamma / neutrons
Unirradiated materials	Water	X	X	X	X	
	Sodium	X				
	Helium	X	X	X		
	Molten salt	Χ				X
Irradiated materials (radioactive)	Water	Х	Х	Χ	Х	
	Sodium					
	Helium		X			
	Molten salt					

Accelerating creep testing

- Challenges: Can't just use higher temperatures or higher stresses to accelerate testing
 - Potential for significantly different mechanisms at lower stresses/temperatures
 - ASME allows extrapolating rupture times out to a factor of 3-5
- Design concept
 - Parallel loading
 - Series loading

NDE Techniques and Importance

- Neutron/X-ray Radiography (2D) and Computed Tomography (3D)
 - Volumetric Imaging
- Dual-Energy X-ray Tomography
 - Material Identification
- Neutron Scattering
 - Microstructure Information
 - Phase Identification
- Photo-Thermal Radiography
 - Thermal Properties Measurements
 - Porosity, Grain Size, Grain Boundary Density

(**Right**) A reconstructed slice of a DED SS 316 part with intentional defects. (**Left**) Segmented porosity can be quantitatively analyzed.

Example of Bragg Edge imaging.

Woracek, Robin, Dayakar Penumadu, Nikolay Kardjilov, Andre Hilger, Mirko Boin, John Banhart, and Ingo Manke. Physics Procedia 69 (2015): 227-236.

(**Right**) Measured thermal diffusivity [mm²/s] at several tracks. The values larger than 4.6 mm²/s (average thermal diffusivity of the measured tracks) are highlighted in red. Denser tracks generally have higher thermal diffusivity.

X-Ray image of the Image Quality Indicator (IQI)
Phantom (left) and associated material identification
results (right) displaying a map of the effective atomic
number (Zeff) at each point in the region of interest.

Fast Automated Characterization

- Faster Scan
- Lower Cost and Labor
- Higher Quality at no computational cost
- GAN-based synthetic data, no data curation
- High-throughput Non-destructive Characterization
- Enhanced Detection and reduced analysis complexity

- Rapid Automated Characterization for Process Parameter Selection
- Integrated with in-situ monitoring process

Registration of In Situ Sensing and Characterization Data

MDDC

Adapting to Post-Process NDE Industry Applications

- Address the challenges of scalability
 - Component size and complexity
 - In-service conditions, access, etc.
 - Changes/features of interest
- Multi-scale/multi-discipline approach is needed
 - Use micro X-CT/n-CT to characterize microstructural features of AM materials
 - Computational modeling to understand effects on material/component performance
 - Use resonance ultrasound approaches to assess impacts of microstructural variations or defects

High Res TEM Data: On a Budget

The ability to collect large TEM data sets

Complex/Multimodal Control

- An Automated Solution:
 - Overcome n = 1
 - Create an automated framework that provides customizable data analysis packages
 - ML/AI integration
- Providing necessary data for development of fundamental models
- Predicting Failure Before it Happens

Nano-Chemistry in Motion

Future Work

- Continue developing accelerated testing and characterization techniques and work with Code Committees for methods for inclusion in qualification processes.
- Determine appropriate NDE methods for insitu fabrication monitoring, QA/QC applications, and in-service inspections.
- Incorporating characterization and NDE data into long-term models to predict part lifetime, failures, etc.
- Correlate in-service NDE monitoring to initial destructive testing of AM parts.
- Link qualification pathways with accelerated testing and characterization methods

Office of ENERGY NUCLEAR ENERGY